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Multimodal datasets contain an enormous Evaluate performance and Computatio_nal
amount of relational information which time of HyperLearn on real-world multimodal

possesses a huge potential for learning in e datasets.
multimedia tasks.
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Relations in datasets with many modalities
can be efficiently represented using
HyperLearn.
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A hypergraph-based framework for
learning complex higher-order
relationships in multimedia datasets
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An unsupervised training approach
capable of jointly modelling relations
between the items of the same modality,
as well as across different modalities.

Using HyperLearn, training can be
parallelized easily across multiple GPUs,
which makes it scalable to datasets with ~ Images Tags ~ Users % (1) %(T) % (U) % (I-T-U)
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In a Hypergraph, an edge is a connection
between any number of vertices instead of
pairwise connections

ARTIST ATTRIBUTION
Dataset: OmniArt

Mathematically, Hypergraph is represented
by an adjacency Tensor instead of a matrix

TRAINING APPROACH

ntra Modal Relational Feature Extraction
Intra Cross-Modal X (Art) Z(A) X (Art-A-M-T¥)
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(a) Vincent van Gogh - Olive Trees (b) Claude Monet — Marine View with a
with Yellow Sky and Sun, 1889 Sunset, 1875

Distributive Training Loss Van Gogh (a) and Monet (b) have many stylistic

_ _ 2 ! T similarities, but their materialization is different.
Lossy = A|| Xy — Aol |E + tr(AgLeAy) Capturing their similarities, differences and

2
influences requires the ability to model
=A1OA20.. O Ag1 © Agsr.. © Ak higher-order relations.




