Visual Analytics Framework for the Assessment of Temporal Hypergraph Prediction Models


Members of communities often share topics of interest. However, usually not all members are interested in all topics, and participation in topics changes over time. Prediction models based on temporal hypergraphs that—in contrast to state-of-the-art models—exploit group structures in the communication network can be used to anticipate changes of interests. In practice, there is a need to assess these models in detail. While loss functions used in the training process can provide initial cues on the model’s global quality, local quality can be investigated with visual analytics. In this paper, we present a visual analytics framework for the assessment of temporal hypergraph prediction models. We introduce its core components: a sliding window approach to prediction and an interactive visualization for partially fuzzy temporal hypergraphs.

In Set Visual Analytics Workshop at IEEE VIS 2019.

Further details on your publication can be written here using Markdown for formatting. This text will be displayed on the Publication Detail page.